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Maximizing Behavior Analysis with  
Massive Multi-Sensor Networks
by Serge Olszanskyj

The purpose of sensors is gaining insight, not 
drowning analysts and decision-makers in data.1 
Hiring more analysts is ultimately cost-prohibitive, 
inefficient, and unsustainable. A precise, automated 
solution is needed, but current approaches do not 
adequately scale. The goal of our work at IEM is to 
develop technology and algorithms that effectively 
transform the exponential growth in data streams into 
an asset for analysts, providing automated suggestions 
of future outcomes and behavioral intent.

The ability to provide analysts with a large number 
of data streams that include full motion video (FMV) 
and other data types is closer to the present than the 
future. The wide-area surveillance sensor capability 
of a Gorgon Stare consists of a single 80-megapixel 
image or 10 to 12 separate images and includes an IR 
channel. There are plans to double this capability.2,3 
Military research labs are testing pilots’ abilities to 
manage up to six drones while monitoring 30 to 40 
different information streams, and they anticipate 
greater loads in the future.4 Swarms of quadrotors, 

each with their own sensor suite, are on the horizon.5 
The relatively low cost and small footprints of sensor 
technologies are driving these advancements. What 
becomes relatively expensive is the time and effort 
required to analyze all those parallel data streams 
efficiently, and transform that data into insight.

The rapid increase in sensor availability and 
deployment is strongly related to (and partially due to) 
the recent explosion in inexpensive parallel computing 
hardware. In the 1980s and 1990s, parallel computing 
lived in the hallowed echelons of supercomputer 
enclaves. Now, there are multiple processors 
(along with a parallel computing-capable graphics 
processor) in computers, laptops, and handheld 
devices. Yet, writing software to efficiently harness 
that computing power is a non-trivial task. This 
challenge worried the computing industry so much 
that companies like Intel and Microsoft invested in 
education and software technology to develop better 
parallel computing programmers and tools.6 

The demand for mission-critical, real-time information is exploding in the Intelligence 

Community. With sensors becoming increasingly sophisticated, inexpensive, and 

interconnected, the response to this demand is coming in the form of massive multi-sensor 

networks. While such systems tantalize us with the ever-increasing potential for analytical 

omniscience, the reality is that analysts and decision-makers are overwhelmed by the large 

data sets being generated.
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Similarly, successfully exploiting the emerging 
massive sensor capability is a challenging task in 
which the following questions should be considered:

• �Is the Intelligence Community investing sufficiently 
in sensor exploitation technologies?

• �If an analyst never has a chance to use the data a 
sensor produces, was the sensor worth the expense?

Getting the most out of a network of sensors is similar 
to exploiting parallel processors in one respect: the 
goal is to obtain maximum efficiency from the available 
resources. However, maximum efficiency for the  
multi-sensor analysis problem has two unique 
components: maximum observation and maximum 
intuition. Maximum observation is making the most of 
all the data available. Maximum intuition is obtaining the 
greatest understanding of a situation in the least amount 
of time. Achieving both in a massive multi-sensor 
environment requires creative, cutting-edge solutions.

The private sector is developing many different 
technologies that can be leveraged to build an 
effective solution set. “Big Data,” the concept of 
using sophisticated analysis of large data sets to 
drive decisions, is currently big business.7 Google 
has implemented self-driving cars, demonstrating 
that computers can smoothly sense a real-world 
environment, merge this information with historical 
data (i.e., street maps), and make automated, real-
time decisions in the context of external human 
actions.8 Apple’s Siri combines natural language 
processing, artificial intelligence, statistical modeling, 
and cloud computing to produce a personal assistant 
with a personality on your mobile phone.9 All of these 
advancements could contribute to improving the 
situational awareness capabilities harnessing massive 
multi-sensor data sets.

Defining the Mission

Our focus is on maximizing sensor capability to analyze 
human behavior. From this perspective, a sensor could 
include detection and tracking functionality, full motion 
video, and even human intelligence (HUMINT) data 
gathering elements. We do not focus on detecting and 
analyzing physical phenomena, such as plume source 
estimation for a chemical, biological, radiological, or 
nuclear (CBRN) release, as such analysis does not 
include the human element.10 

We have identified two fundamental use cases for 
human behavior analysis with massive multi-sensor 
networks, ascertained from discussions with active 
and retired military analysts. We refer to these use 
cases as Real-Time Surveillance and Analysis (RTSA) 
and Post-Surveillance Data Analysis (PSDA). Both use 
cases can occur in one mission, but most missions fall 
into one category or the other.*

RTSA represents human-in-the-loop analysis of live 
multi-sensory data feeds. RTSA missions typically focus 
on the real-time tracking, monitoring, and intelligence-
gathering of persons or events of interest, or provide 
general “eye in the sky” support to a mission.

PSDA represents the extraction of information from 
recorded sensor data streams after an event of 
interest — for example, mining surveillance video after 
a crime has been committed. This data is typically 
searched for anomalous behavior leading up to the 
time of the event. From this data, detailed context of 
the event is constructed and actors identified.

Both use cases require maximum observation and 
maximum intuition. The use cases primarily differ only 
in how specific technologies are employed.

Maximum Observation

To understand the concept of maximum observation 
in a massive multi-sensor context, we start with a 
simple example. Consider a sensor network with 
three simple sensors. Each sensor offers only binary 
(yes/no) output. Then, assume an observation from 
a point in time where two sensors output “yes” and 
one outputs "no." A simple voting algorithm would 
determine the conclusion is “yes,” but this doesn’t give 
a true picture. Why did the one sensor vote “no”? Is it 
a different kind of sensor, with different resolution? 
Is it not geographically co-located to the other two? 
With three sensors, it is straightforward to report the 
details of each one to the analyst. But this solution 
doesn’t scale. What is the solution for 100, 1,000, or 
more sensors, with each producing more complex data 
than simple binary output?

Consider this problem from the analyst's point of view. 
What does an analyst really need to see from a sensor 
network? With a sensor network so large, it will not be 
feasible for an analyst to examine the data stream from 
every sensor. There must be a higher-order interface 

* ��When we speak of the role of the analyst we are also including the role of the decision maker. We realize that in many organizations, those 
roles may be held by separate individuals.
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present — a layer (e.g., software and algorithms) 
between the analyst and sensors. What does this 
software layer need to accomplish for the analyst to 
achieve maximum observation and maximum intuition?

To achieve maximum observation, the input data 
stream must be fused into a format that the analyst 
can easily ingest. There are a number of multivariate 
data visualization techniques that would work for 
sensor networks:

• Spatial (e.g., geographical map display)
• Hierarchical (e.g., collapsible trees or graphs)
• Temporal (e.g., timelines)
• �Some combination of spatial, hierarchical,  

and temporal11 

Organizing input data streams in these ways saves 
the analyst time by providing a high-level view, but 
with detailed access to individual pieces when needed. 
These are good (and necessary) approaches to 
maximum observation. However, while this solution 
scales in the presence of many sensor inputs, it will 
not easily scale in all cases. For example, how does 
one organize and present 100 FMV data streams?

Maximum Intuition

Naturally, if we move some of the decision-making to 
the computer, allowing it to decide what information 
is important and what isn’t, and present only the 
“important” data to the analyst, we can significantly 
streamline the input to the analyst. This is the realm 
of classification, queries, dimensionality reduction, 
and other data mining techniques.12 Such technologies 
are important parts of any software layer designed to 
assist the analyst. The fundamental drawback to these 
approaches is that they require the analyst to supply 
the system with a hint (e.g., a keyword or image) to 
initiate the interpretation of the data.

The problem, of course, is that analysis does not 
always work that way. A priori knowledge of what 

to look for is often not available. Sometimes a 
“person of interest” is not interesting until she/
he has done something that might be considered 
unusual. Sometimes it is not what happens that raises 
concern, but what does not happen. How do you query 
the concept of “not fitting a pattern I do not know 
beforehand”? These problems can only really be solved 
by immersing the analyst in situ in the space and time 
of interest to sense when something is amiss.

This is the crux of achieving maximum intuition —  
“the power to see the invisible.”13 The ideal for 
a sensor network is to completely automate the 
analysis. The software layer would function as the 
“brain” for the network that would analyze the data 
autonomously, determine the context and meaning of 
the situation, and report or even act on the analyses. 
This is the ideal, but it is not imminently practical. 
More realistic is to plan for the software layer to assist, 
not replace, the analyst. For this to work, the analyst 
would have to give up some tasks to the computer. Of 
course, there are some tedious tasks that analysts 
will happily give up if a computer will do it for them. 
Some tasks that involve a little more thought, intuition, 
or on-the-job experience may not be so easy to 
relinquish. The software layer will have to earn the 
trust of the analyst for that to happen.

There are a number of methods that can give the 
software layer some intuition skills, such as object 
identification through training sets14 and stochastic 
methods.15 While these approaches are assets, it is not 
clear if they can adapt quickly enough to be practical. 
In an asymmetric, human behavior-based threat 
space, the antagonists may adjust their methods in 
response to evolving analytical techniques. Thus, what 
works today may not work tomorrow, and the software 
layer has to adapt to help the analyst stay ahead. 

Ironically, another important dimension to maximum 
intuition is the ability to handle “nothing” efficiently. 
In many missions, “no activity of interest” occurs far 

What works today may not work 

tomorrow, and the software layer 

has to adapt to help the analyst 

stay ahead.
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more often than critical events. Much of the current 
research focuses on finding events of interest, but does 
not examine how to improve the analyst’s efficiency 
when there are no events of interest. Systems that tend 
to self-monitor, filter, and provide high-level alarms 
are a typical way to handle this problem, but these 
approaches leave out important insight.16 Data streams 
deemed non-interesting by automated tools may 
very well provide important context that improves the 
analyst’s overall situational awareness. In these cases, 
can a system provide maximum intuition and still allow 
an analyst to turn his or her attention to another task 
during lulls in the mission?

The software layer will not only have to learn, it 
will have to learn on-the-fly and adapt. Maximum 
observation then becomes maximum situational 
awareness for both the analyst and the software  
layer. Maximum intuition occurs with both analyst  
and computer developing and exchanging insight in 
real-time, adaptively.

Conclusion

Given the evolving technological advancements in 
sensors, taking full advantage of their capabilities 
without overwhelming analysts is a critical problem. 
In particular, we consider the problem of human 
behavior analysis with massive multi-sensor networks. 
Traditional approaches of data visualization, data 
mining, and probabilistic models are key components 
in the analyst’s tool box, but they may not scale 
gracefully in the presence of massive, multimedia data 
sets. Our key focus areas are adaptive intuition in the 
presence of evolving situational awareness without 
prior insight and the appropriate handling of large 
blocks of data that are sparse in critical events. The 
goal is to elevate the automation assistance for the 
analyst from a data stream level to an intuition level. To 
that end, IEM is developing a robust software layer that 
provides maximum observation and maximum intuition 
with the ability to suggest intent with precision, in a 
form that is efficient, adaptive, and trustworthy.  
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