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Abstract 
 
Zhang (2011)[1] presented improvements to Brent’s method for finding roots of a function of a 
single variable. Zhang’s improvements make the algorithm simpler and much more 
understandable. He shows one test example and finds for that case that his method converges 
more rapidly than Brent’s method. There are a few easily-correctible flaws in the algorithm as 
presented by Zhang which must be corrected in order to implement it. This paper shows these 
corrections. 
 
We then proceed to compare the performance of several well-known root finding methods on a 
number of test functions. Methods tested are Zhang’s method, Bisection, Regula Falsi with the 
Illinois algorithm, Ridder’s method, and Brent’s method. The results show that Brent’s method 
and Regula Falsi generally give relatively slow initial convergence followed by very rapid final 
convergence and that Regula Falsi converges nearly as rapidly as Brent’s method. Zhang’s 
method and Ridder’s method show similar convergence with both having faster initial 
convergence than Brent and Regula Falsi but slower final convergence. In many situations, the 
more rapid initial convergence of the Zhang method and Ridder’s method leads to obtaining 
solutions with fewer total function evaluations than needed for Brent or Regula Falsi. Selection of 
the best method depends on the function being evaluated, the size of the initial interval, and the 
amount of accuracy required for the solution. Large initial intervals and low accuracy favor the 
Zhang and Ridder methods, while smaller intervals and high accuracy requirements favor Brent 
and Regula Falsi methods. 
 
Guidance is presented to help the reader determine which root-finding method may be most 
efficient in a particular situation. 
 
Keywords: Brent’s Method, Zhang’s Method, Ridder’s Method, Regula Falsi Method, Bisection 
Method, Root Finding, Simplification, Improvement 

 

 
1. INTRODUCTION 

A common problem in numerical analysis is to the find the root of a function. In other words, for 
some given function F(x), to find the value of x such that F(x) = 0. The original purpose of this 
paper was to examine the behavior of a new root-finding algorithm proposed by Zhang (2011)[1], 
however, the work expanded to include comparative evaluation of several other root-finding 
methods.  
 
Through the years, this author has needed a root finding algorithm on several occasions, most 
often selecting Regula Falsi with the Illinois algorithm as dependable and sufficiently fast and 
rejecting Brent’s method as too complicated to bother with. Zhang’s paper promised a simple but 
powerful method, however, it was necessary to the correct problems mentioned below in Section 
2 before Zhang’s method could be implemented or tested. By comparing the convergence of 
Zhang’s method with several well-known root finding methods, we provide some guidance that 
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may help users select the method that is best suited for their particular application. Texts 
discussing root finding methods emphasize the order of convergence, but generally do not 
discuss the speed of initial convergence, which, as shown below, can be a major factor in how 
rapidly a satisfactory root can be found. 
 
Brent (1973)[2] presented a method for finding roots of functions of single variables that is both 
reliable and has better than linear convergence. This method is widely presented in textbooks 
[3][4], however it involves a complicated set of rules which make the method difficult to 
understand and requires complex computer code. Zhang (2011)[1] proposed revisions to Brent’s 
method that make it much simpler and therefore easy to follow. Zhang tested this method for 
finding the root of an example function and showed that The Zhang method gave more rapid 
convergence than the traditional Brent method for that example. 
 
While implementing and testing the Zhang method, this author found a couple of flaws in the 
algorithm as presented by Zhang. Fortunately, these flaws can be readily corrected as shown 
below. The corrected Zhang algorithm was tested for finding roots of several functions and 
compared with well-known root finding algorithms. The results are shown below and demonstrate 
that the Zhang compares favorably with the Brent method and other traditional methods in many 
cases, is superior in some situations, and is inferior in other situations.. 

 
2. CORRECTED ZHANG METHOD 

This section first identifies the flaws found in the Zhang algorithm as presented by Zhang and 
then shows a corrected version of the method. 
 
2.1 Flaws in the Algorithm 
The following flaws have been identified in the algorithm: 
 

• In the text, Zhang states that his method assumes a<b, however, the logic in his 
algorithm for selecting which two points to retain for use in the next iteration only works 
for b<a. 
 

• Sometimes the algorithm can lead to fc=0 or fs=0. The logic does not always result in 
these values being identified as roots. 
 

• The value of s found using inverse quadratic interpolation can sometimes be outside of 
the interval (a,b) leading to a function evaluation that cannot be the desired root. 
Furthermore, the logic for selecting the interval for the next iteration does not correctly 
exclude use of s in some of these cases. 

 
For cases when s is not between b and a, there are three obvious options: 
 

• Do not do the second function evaluation. Select the next interval based on a, c, and b. 
This can be accomplished by setting s:=c. 
 

• Find s by bisecting (a,c) or (c,b), depending on which contains the root and evaluate f(s). 
 

• Find s using the secant method on (a,c) or (c,b), depending on which contains the root 
and evaluate f(s). 

 
The algorithm shown in the next section allows use of any of these three options. The 
performance of the three methods is compared below. This situation does not occur in many of 
the tests shown here, so the three options produce identical results for most tests. In the tests 
done here, the choice of option does not appear to have significant impact on convergence. 
 
 



Steven A. Stage 

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (1) : 2013 3 

2.2 Corrected Algorithm 
The above-mentioned flaws are corrected in the following version of the Zhang algorithm. 
Comments have been added to clarify logic. 
 

• input a, b, and a pointer to a subroutine for f 

• if b<a then swap(a,b) end if (Logic below requires a<b) 

• calculate f(a) 

• calculate f(b) 

• if f(a)*f(b) >= 0 then error-exit end if 

• repeat until f(a or b) = 0 or |b − a| is small enough (convergence) 
o c =(a+b)/2 
o calculate f(c) 
o if f(a) ≠ f(c) and f(b) ≠ f(c) then 

� calculate s (inverse quadratic interpolation) 
� If a<s and s<b then 

• calculate f(s) 
� else 

• s is not in (a,b). Use logic shown in section 2.1. 
� End if 

o else 
� calculate s (secant rule) (Use the interval (a,c) or (c,b) that contains the 

root.) 
� calculate f(s) 

o end if 
o if c> s then swap(s,c) (Ensures that a<=c<=s<=b as required for the logic below 

to work.) 
o if f(c)*f(s) <= 0 then (The equal sign here ensures that points with f(c or s)=0 will 

be used.) 
o � a: = c 
o � b: = s 
o else 
o � if f(a)*f(c) < 0 then b: = c else a: = s end if (Corrected from Zhang.) 
o end if 

• end repeat 

• output a or b (Return root.) 
 

3. PERFORMANCE TESTS 

This section compares the performance the Zhang method with several other classic root finding 
methods. 
 
3.1 Methods Compared 
The following root-finding methods are included in these tests: 
 

• Bisection 

• Regula Falsi (including the Illinois algorithm) 

• Ridder 

• Brent 

• Zhang 

• Zhang mid 

• Zhang sec 
 
With the exception of the Zhang method, these algorithms are well known and can be found in 
standard texts (for instance, Press, et. al. (1995) [4]) and at numerous locations on the internet. 
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The performance of the basic Regula Falsi method is reduced by the tendency for one end of the 
evaluation interval to remain stationary while the other improves. In the Regula Falsi method used 
here, this tendency is reduced by using the Illinois algorithm [5] described as follows. Use of this 
algorithm greatly improves final convergence of Regula Falsi. 
 
Before iterations begin:  
 

• Set iEnd=-1  
 
Within the iteration loop, when selecting the interval to use for the next point: 
 

• If fa * fc <= 0 then 
o b:=c 
o If iEnd =0 then 

� fa=fa/2 
o end if 
o iEnd =0 

• else 
o a:=c 
o If iEnd =1 then 

� fb=fb/2 
o end if 
o iEnd =1 

• end if 
 
The three Zhang methods correspond to the three options described in section 2.1 for handling 
cases when s is not in the interval (a, b). For the majority of the tests run here, this situation does 
not arise and the three options give the identical same results. Except as noted, all three Zhang 
options produce a single curve on the plots shown below. 
 
3.2 Initial Interval 
Except as noted, the tests shown in this section were run using -10 and 10 as the initial interval. 
This interval was used because it is large enough to capture some of the behavior of the 
algorithms when they are not in the final stages of convergence. Tests were also done using 
other intervals to determine the sensitivity of the results to initial interval and the results were 
considered in reaching the conclusions stated in this paper. 
 
All functions tested have roots between 0 and 1 with locations of roots chosen to not be the exact 
result of bisection of the initial intervals used. 
 
3.3 Convergence Conditions 
For these tests, the convergence condition was that any one of the following conditions be true: 
 

• 
15

10a b
−

− ≤  

• ( ) 15
f 10a

−
≤  

• ( ) 15
f 10b

−
≤  

• 
151

2
10a b a b

−
− ≤ +  

 
The last of these conditions was never encountered in these tests, because the roots all had 
absolute values less than 1. However, in general, having a condition like this is important to 
account for machine accuracy for cases with roots having large absolute values. 
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3.4 Testing Function From Zhang 
Function tested 

( ) ( ) 3
f cosx x x= −   

 

 
 

FIGURE 1: Convergence for Zhang’s Test Function. Initial Interval (0,4). 

 
This is the function tested by Zhang and uses the initial interval (0,4), which corresponds to 
Zhang. The code used in this paper exactly reproduces the values shown in Zhang Table 1 
verifying the code implementation. 
 
The plot shows the absolute value of error in x as a function of the number of function calls, 
where the error in x is the difference between the current estimate of x and the value at 
convergence. 
 
In Figure 1, the Zhang and Ridder methods give the fastest initial convergence, but Brent and 
Regula Falsi have faster final convergence and catch up. Bisection is slow. All three options for 
the Zhang method produce identical results for this test. 
 
Figure 2, shows convergence when the initial interval is (-10,10). In this case, Brent and Regula 
Falsi give the fastest convergence. Ridder and Zhang (all three options) are next and Bisection is 
slowest. Tests using other intervals show order of the convergence curves is quite dependent on 
initial interval. However all tests indicate that final convergence is fastest (the curves drop mostly 
steeply) for Brent and Regula Falsi and that final convergence of Ridder and Zhang is slower and 
about equal to each other. 
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FIGURE 2: Convergence for Zhang’s Test Function. Initial Interval (-10,10). 

 
 
3.5 Testing Another Cosine Function  
Function tested 

( ) ( )f cosx x x= −  

 

 
 

FIGURE 3: Convergence for a Cosine Function. 
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This is another function similar to the first. In this case, Brent is fastest. Regula Falsi takes more 
steps to converge, but has very steep final convergence. Tests indicate that although Regula 
Falsi happens to be a little slow here, it is nearly as fast as Brent for most initial intervals. Ridder 
and Zhang have very similar convergence and Bisection is slow. 
 
3.6 Testing a Linear Function  
Function tested 

( ) 3

4
f 1x x= −  

 

 
 

FIGURE 4: Convergence for a Linear Function. 

 
This function is linear. As expected, the Regula Falsi, Brent, and Zhang (all options) methods are 
able to exactly find the root after only 3 or 4 function evaluations. Bisection converges slowly. 
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3.7 Testing An Inverse Quadratic Function  
Function tested 

( )

0.5
2 2

3 3

0.5
2

3

0.1 if 
f

0.1 otherwise

x x
x

x

 − − ≤ 
=  

− − −  

 

 

 
 

FIGURE 5: Convergence for an Inverse Quadratic Function. 

 
The two parts of this function are inverse quadratic equations. The Brent and Zhang methods use 
inverse quadratic interpolation and immediately converge to the exact solution once the 
evaluation interval is small enough that it does not include x=2/3, where the equation has its 
transition point. Regula Falsi and Ridder also do very well for this function. Tests using various 
initial intervals indicate that Brent converges first, followed by Zhang, Regula Falsi, Ridder and 
Bisection, in that order. 
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3.8 Testing a More Difficult Inverse Quadratic Function  
Function tested 

( )

0.5
2 2

3 3

0.5
2

3

if 
f

otherwise

x x
x

x

 − ≤ 
=  

− −  

 

 

 
 

FIGURE 6: Convergence for an Inverse Quadratic Function. 

 
The two parts of this function are inverse quadratic equations; however, the root of this function is 
at the point where the two sections of the curve join and the derivative is infinite there. As a result, 
the inverse quadratic interpolations in the Brent and Zhang methods are never able to find the 
exact root in a single step.  
 
For all initial intervals tested, Brent, Regula Falsi, and Ridder gave the fastest convergence, in 
that order. In this case, the Zhang method produces a step when s is not in the interval (a,b), thus 
the three options for Zhang do not give identical results, however, the three options have 
indistinguishable rates of convergence and are as slow as bisection. The slope of the Brent, 
Regula Falsi, and Ridder methods are equal to each other and only very slightly steeper than the 
slopes of the Zhang curves and Bisection. The steepness of this function at the root and the 
discontinuous derivatives there frustrate final convergence of all of methods and cause them to 
be nearly as slow as bisection. 
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3.9 Testing an Inverse 5
th

 Order Polynomial Function  
Function tested 

( )

0.2
2 2

3 3

0.2
2

3

if 
f

otherwise

x x
x

x

 − ≤ 
=  

− −  

 

 

 
 

FIGURE 7: Convergence for an Inverse 5
th

 Order Polynomial. 

 
The two parts of this function are inverse 5

th
 order polynomials. As with the previous function, the 

root of this function is at the point where the two sections of the curve join and the derivative is 
infinite there making root finding challenging. As in the previous example, all methods have slow 
convergence similar to Bisection. 
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3.10 Testing an Cubic Polynomial Function 
Function tested 

( ) ( ) ( )
3

7 7

9 9
f 0.001x x x= − + −  

 

 
 

FIGURE 8: Convergence for a Cubic Polynomial. 

 
This function is a cubic polynomial with root at 7/9. This case demonstrates the behavior of the 
methods during two distinct phases of convergence. Away from the root, the cubic term 
dominates causing slow initial convergence for all methods. As the root is approached, the cubic 
term becomes less important, the linear term dominates, and the root-finding methods are able to 
rapidly converge. 
 
Bisection has the same, slow, steady rate throughout the convergence, but actually beats the 
other methods initially. Among the remaining methods, initial convergence is fastest for Ridder, 
followed by Zhang, Regula Falsi, and Brent in that order. The speed of final convergence is the 
reverse with Brent fastest, followed by Regula Falsi, then Zhang and Ridder. In this example, 
initial interval is relatively large and the overall convergence is determined by the initial speed. If 
the initial interval is made larger, the initial phase is even more important and he convergence 
curves spread out. If the initial interval is made smaller, the curves bunch more tightly together 
and may change relative position. 
 
The importance of the initial and final phases of convergence can be modified by changing the 
coefficient of the linear term, the larger the coefficient, the sooner the linear term takes over and 
the sooner final convergence sets in. 
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3.11 Testing a Heaviside Function  
Function tested 

 

( )
1

3
0.5 if 

f
0.5 otherwise

x
x

− ≤ 
=  
 

 

 

 
 

FIGURE 9: Convergence for a Heaviside Function. 

 
This Heaviside function is discontinuous at x=1/3 and has no actual root. However it is a useful 
test, because all of the methods tested here use intervals that trap the root and algorithms that 
are guaranteed to converge to either a root or a discontinuity (see, for instance, Press, et. al [4]). 
Thus, this is a test of how quickly the methods can find the discontinuity. 
 
The function evaluations do not contain any information about the location of the root except 
which subinterval the root is in. Linear (secant) interpolation of this function results in bisection of 
the interval thus all methods converge by bisection.  
 
Regula Falsi finds the root to within double precision accuracy after 12 function evaluations. If the 
initial interval is changed the convergence curve for Regula Falsi joins the other curves. This 
illustrates that root finding algorithms can stumble into the root for some initial intervals, but that 
this is a matter of luck rather than skill. In this case, the use of the Illinois method results in a 
value of 1/3. 
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3.12 Testing a More Difficult Heaviside Function  
Function tested 

 

( )
3 1

3

3

10 if 
f

1 10 otherwise

x
x

−

−

 − ≤
=  

− 
 

 

 
 

FIGURE 10: Convergence for a More Difficult Heaviside Function. 

 
This function is a Heaviside function with a different vertical offset than the previous test. For the 
previous test function, use of linear (secant) interpolation resulted in bisection of the interval. For 
the function in this test, linear interpolation leads to a point much closer to one end of the interval 
than to the other end. This makes Regula Falsi very slow. Ridder, Zhang, and Brent methods use 
curved functions to interpolate which do better than linear interpolation but cannot find this root as 
rapidly as Bisection. Other initial intervals show similar results. 
 
This test is relevant to a set of continuous functions that occur in real-world problems, namely 
functions that are more or less flat at one value, rapidly change over a narrow transition region, 
and then are relatively flat again. In these cases, the flat parts of the function do not provide much 
information about the location of the transition. In fact, the information actually misleads the root-
finding algorithms and causes them to be slower than bisection until an evaluation point is found 
that is in the transition region. 
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3.13 Testing a Discontinuous Function  
Function tested 

 

( )
( )

1
2

3

0 if 0

f
1 otherwise

x

x −

=  
=  

−  
 

 

 
 

FIGURE 11: Convergence for a Discontinuous Function. 

 
This is a particularly challenging function. It has an infinite-magnitude discontinuity rather than a 
root. Except for Bisection, all of the root-finding algorithms make assumptions that the function 
can be fit by linear or other continuous functions, which distinctly do not apply to this function. 
 
This case produces situations when inverse quadratic interpolation produces values outside the 
interval, thus the three options for the Zhang method produce different convergence. 
 
For this function, Bisection gives fastest convergence, followed by Brent. Regula Falsi gives the 
slowest convergence. Ridder and the three options of Zhang are intermediate with locations that 
change substantially depending on the initial interval. When a variety of initial intervals is 
considered, the three options for Zhang perform about equally. 
 
Most real-world applications do not involve functions that are this poorly behaved; however, this 
test indicates how well the various methods perform when such cases do arise. 
 
For the initial interval shown here, Ridder stumbles into the root. For an initial interval of (0,7) 
Brent stumbles into the root. 

 
4. DISCUSSION AND CONCLUSIONS 
The tests shown here indicate that the corrected Zhang method can compete with other well-
known and commonly used root-finding methods. The methods tested here are: 
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• Bisection 

• Regula Falsi (including the Illinois algorithm) 

• Ridder 

• Brent 

• Zhang 

• Zhang mid 

• Zhang sec 
 
The relative performance of the methods depends on: 
 

• The function being evaluated 

• The initial interval 

• The tolerances desired for the root. 
 
These tests were selected to include a range of functions from those that are smooth and obey 
the assumptions made by the root-finding methods to functions selected to deliberately challenge 
the algorithms. Root finding usually involves a slow initial phase when the interval is large 
followed by final convergence when the interval is small and the function can be approximated by 
simple interpolating functions (linear, inverse quadratic or exponential for these methods) giving 
much faster convergence.  
 
Most of the literature evaluates root finding methods by the speed of final convergence, however, 
the results shown here demonstrate that a significant fraction of the computation can be spent 
during initial convergence and that this may determine which method converges first. When the 
initial evaluation interval is large, relatively more time is spent in the initial search. If tolerances for 
the root are large, an adequate root may be found without many final-convergence steps. 
Conversely, requiring high-accuracy roots increases the importance of using a method with rapid 
final convergence. 
 
According to these tests, the Brent method tends to have relatively slow initial convergence 
followed by very rapid final convergence. The Regula Falsi method also tends to have slow initial 
convergence followed by final convergence that compares favorably with the Brent method. In 
these tests, Regula Falsi typically came in a close second to Brent. Regula Falsi is very easy to 
understand and program, whereas Brent is much more complex. 
 
Ridder’s method and Zhang’s method are structurally simple and very similar to each other with 
the primary difference being the interpolation function used. According to these tests the two 
methods have similar convergence with initial convergence that is generally faster than achieved 
by Brent and Regula Falsi and final convergence that is generally somewhat slower. In problems 
having large initial intervals and/or not requiring very high accuracy roots, Ridder or Zhang can be 
good choices. 
 
Any implementation of Zhang must use one of the options described above to handle cases when 
the inverse quadratic interpolation is outside the interval. The tests done here are not sufficient to 
recommend which option is best. Fortunately, this situation is rarely encountered. Furthermore, 
the situation occurs during initial convergence rather than during final convergence. This author 
favors the Zhang Secant option on purely heuristic grounds. The Zhang method with no second 
evaluation is simply bisection. The Zhang Mid option is equivalent to two bisections. The Zhang 
Secant option would seem to offer the highest order convergence for the step. At any rate, it does 
not appear that choice of this option has much impact on convergence. Further experience with 
Zhang’s method in practical problems may reveal situations in which one of these options is 
superior to the others 
 
Hopefully, this paper will help the readers to better appreciate the factors that contribute to 
performance of root finders and to help them determine which method will best meet their needs. 
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Most texts discuss the order of convergence and suggest higher order methods are superior. The 
present research indicates that this is an overly simplistic view. In many cases, initial 
convergence takes up a substantial fraction of the computation time. Higher-order methods are 
also more prone to failure when the function does not have the shape assumed when deriving the 
root-finding method. 
 
It is also hoped that analysis similar to that shown here will be included with future research on 
root-finding algorithms and that textbooks and instruction will help students to understand these 
factors. 
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